3.1026 \(\int \frac{\sqrt{x} (A+B x)}{(a+b x+c x^2)^3} \, dx\)

Optimal. Leaf size=426 \[ -\frac{\sqrt{x} (-2 a B-x (b B-2 A c)+A b)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (c x \left (12 a b B-A \left (20 a c+b^2\right )\right )-A \left (8 a b c+b^3\right )+a B \left (7 b^2-4 a c\right )\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\sqrt{c} \left (A \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}-52 a b c+b^3\right )+6 a B \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (\frac{A \left (b^3-52 a b c\right )+6 a B \left (4 a c+3 b^2\right )}{\sqrt{b^2-4 a c}}-A \left (20 a c+b^2\right )+12 a b B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

-(Sqrt[x]*(A*b - 2*a*B - (b*B - 2*A*c)*x))/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2)^2) - (Sqrt[x]*(a*B*(7*b^2 - 4*a*
c) - A*(b^3 + 8*a*b*c) + c*(12*a*b*B - A*(b^2 + 20*a*c))*x))/(4*a*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) + (Sqrt[c
]*(6*a*B*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c]) + A*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2
 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*a*(b^2 - 4*a*c)^(5/2)*Sq
rt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(12*a*b*B - A*(b^2 + 20*a*c) + (6*a*B*(3*b^2 + 4*a*c) + A*(b^3 - 52*a*b*
c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*a*(b^2 - 4*a*
c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 1.24562, antiderivative size = 426, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {820, 822, 826, 1166, 205} \[ -\frac{\sqrt{x} (-2 a B-x (b B-2 A c)+A b)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (c x \left (12 a b B-A \left (20 a c+b^2\right )\right )-A \left (8 a b c+b^3\right )+a B \left (7 b^2-4 a c\right )\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\sqrt{c} \left (A \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}-52 a b c+b^3\right )+6 a B \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (\frac{A \left (b^3-52 a b c\right )+6 a B \left (4 a c+3 b^2\right )}{\sqrt{b^2-4 a c}}-A \left (20 a c+b^2\right )+12 a b B\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[x]*(A + B*x))/(a + b*x + c*x^2)^3,x]

[Out]

-(Sqrt[x]*(A*b - 2*a*B - (b*B - 2*A*c)*x))/(2*(b^2 - 4*a*c)*(a + b*x + c*x^2)^2) - (Sqrt[x]*(a*B*(7*b^2 - 4*a*
c) - A*(b^3 + 8*a*b*c) + c*(12*a*b*B - A*(b^2 + 20*a*c))*x))/(4*a*(b^2 - 4*a*c)^2*(a + b*x + c*x^2)) + (Sqrt[c
]*(6*a*B*(3*b^2 + 4*a*c - 2*b*Sqrt[b^2 - 4*a*c]) + A*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2
 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*a*(b^2 - 4*a*c)^(5/2)*Sq
rt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(12*a*b*B - A*(b^2 + 20*a*c) + (6*a*B*(3*b^2 + 4*a*c) + A*(b^3 - 52*a*b*
c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(4*Sqrt[2]*a*(b^2 - 4*a*
c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*(f*b - 2*a*g + (2*c*f - b*g)*x))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/
((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*Simp[g*(2*a*e*m + b*d*(2*p + 3)) - f*
(b*e*m + 2*c*d*(2*p + 3)) - e*(2*c*f - b*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (IntegerQ[m] || IntegerQ[p]
 || IntegersQ[2*m, 2*p])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{x} (A+B x)}{\left (a+b x+c x^2\right )^3} \, dx &=-\frac{\sqrt{x} (A b-2 a B-(b B-2 A c) x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\int \frac{\frac{1}{2} (-A b+2 a B)-\frac{5}{2} (b B-2 A c) x}{\sqrt{x} \left (a+b x+c x^2\right )^2} \, dx}{2 \left (b^2-4 a c\right )}\\ &=-\frac{\sqrt{x} (A b-2 a B-(b B-2 A c) x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (a B \left (7 b^2-4 a c\right )-A \left (b^3+8 a b c\right )+c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\int \frac{\frac{1}{4} \left (3 a B \left (b^2+4 a c\right )+A \left (b^3-16 a b c\right )\right )-\frac{1}{4} c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x}{\sqrt{x} \left (a+b x+c x^2\right )} \, dx}{2 a \left (b^2-4 a c\right )^2}\\ &=-\frac{\sqrt{x} (A b-2 a B-(b B-2 A c) x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (a B \left (7 b^2-4 a c\right )-A \left (b^3+8 a b c\right )+c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{4} \left (3 a B \left (b^2+4 a c\right )+A \left (b^3-16 a b c\right )\right )-\frac{1}{4} c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x^2}{a+b x^2+c x^4} \, dx,x,\sqrt{x}\right )}{a \left (b^2-4 a c\right )^2}\\ &=-\frac{\sqrt{x} (A b-2 a B-(b B-2 A c) x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (a B \left (7 b^2-4 a c\right )-A \left (b^3+8 a b c\right )+c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\left (c \left (6 a B \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right )+A \left (b^3-52 a b c+b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}\right )\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{8 a \left (b^2-4 a c\right )^{5/2}}-\frac{\left (c \left (12 a b B-A \left (b^2+20 a c\right )+\frac{6 a B \left (3 b^2+4 a c\right )+A \left (b^3-52 a b c\right )}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,\sqrt{x}\right )}{8 a \left (b^2-4 a c\right )^2}\\ &=-\frac{\sqrt{x} (A b-2 a B-(b B-2 A c) x)}{2 \left (b^2-4 a c\right ) \left (a+b x+c x^2\right )^2}-\frac{\sqrt{x} \left (a B \left (7 b^2-4 a c\right )-A \left (b^3+8 a b c\right )+c \left (12 a b B-A \left (b^2+20 a c\right )\right ) x\right )}{4 a \left (b^2-4 a c\right )^2 \left (a+b x+c x^2\right )}+\frac{\sqrt{c} \left (6 a B \left (3 b^2+4 a c-2 b \sqrt{b^2-4 a c}\right )+A \left (b^3-52 a b c+b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (12 a b B-A \left (b^2+20 a c\right )+\frac{6 a B \left (3 b^2+4 a c\right )+A \left (b^3-52 a b c\right )}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{4 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 1.51982, size = 510, normalized size = 1.2 \[ \frac{-\frac{x^{3/2} \left (A \left (20 a^2 c^2-15 a b^2 c-16 a b c^2 x+b^3 c x+b^4\right )+3 a B \left (4 a c^2 x+b^2 c x+b^3\right )\right )}{2 a \left (4 a c-b^2\right ) (a+x (b+c x))}+\frac{x^{3/2} \left (A \left (-2 a c+b^2+b c x\right )-a B (b+2 c x)\right )}{(a+x (b+c x))^2}+\frac{\frac{\sqrt{2} a \sqrt{c} \left (A \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}-52 a b c+b^3\right )+6 a B \left (-2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} a \sqrt{c} \left (A \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}+52 a b c-b^3\right )-6 a B \left (2 b \sqrt{b^2-4 a c}+4 a c+3 b^2\right )\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} \sqrt{x}}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-2 A \sqrt{x} \left (b^3-16 a b c\right )-6 a B \sqrt{x} \left (4 a c+b^2\right )}{4 a \left (b^2-4 a c\right )}}{2 a \left (b^2-4 a c\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[x]*(A + B*x))/(a + b*x + c*x^2)^3,x]

[Out]

((x^(3/2)*(-(a*B*(b + 2*c*x)) + A*(b^2 - 2*a*c + b*c*x)))/(a + x*(b + c*x))^2 - (x^(3/2)*(3*a*B*(b^3 + b^2*c*x
 + 4*a*c^2*x) + A*(b^4 - 15*a*b^2*c + 20*a^2*c^2 + b^3*c*x - 16*a*b*c^2*x)))/(2*a*(-b^2 + 4*a*c)*(a + x*(b + c
*x))) + (-6*a*B*(b^2 + 4*a*c)*Sqrt[x] - 2*A*(b^3 - 16*a*b*c)*Sqrt[x] + (Sqrt[2]*a*Sqrt[c]*(6*a*B*(3*b^2 + 4*a*
c - 2*b*Sqrt[b^2 - 4*a*c]) + A*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sq
rt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2
]*a*Sqrt[c]*(-6*a*B*(3*b^2 + 4*a*c + 2*b*Sqrt[b^2 - 4*a*c]) + A*(-b^3 + 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*
a*c*Sqrt[b^2 - 4*a*c]))*ArcTan[(Sqrt[2]*Sqrt[c]*Sqrt[x])/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt
[b + Sqrt[b^2 - 4*a*c]]))/(4*a*(b^2 - 4*a*c)))/(2*a*(b^2 - 4*a*c))

________________________________________________________________________________________

Maple [B]  time = 0.045, size = 1364, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*x^(1/2)/(c*x^2+b*x+a)^3,x)

[Out]

2*(1/8*c^2*(20*A*a*c+A*b^2-12*B*a*b)/a/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(7/2)+1/8/a*c*(28*A*a*b*c+2*A*b^3+4*B*a^2*
c-19*B*a*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(5/2)+1/8*(36*A*a^2*c^2+5*A*a*b^2*c+A*b^4-16*B*a^2*b*c-5*B*a*b^3)/a
/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(3/2)+1/8*(16*A*a*b*c-A*b^3-12*B*a^2*c-3*B*a*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^(
1/2))/(c*x^2+b*x+a)^2-5/2/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(
1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A-1/8/a/(16*a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((-b+(-4*a*c+b^
2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^2+13/2/(16*a^2*c^2-8*a*b^2
*c+b^4)*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*
c+b^2)^(1/2))*c)^(1/2))*A*b-1/8/a/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1
/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^3+3/2/(16*a^2*c^2-8*a*b^2*c+b^4
)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*B
-3*a/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/
2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B-9/4/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/
((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x^(1/2)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B*b^2+5/2/(16*a
^2*c^2-8*a*b^2*c+b^4)*c^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*A+1/8/a/(16*a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^2+13/2/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2
)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b-1/8/a/(16*a^
2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((
b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*A*b^3-3/2/(16*a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2
)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*B-3*a/(16*a^2*c^2-8*a*b^2*c+b^4)*c^2/(-4*a*c+b^
2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B
-9/4/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x^(1/2)*c
*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*B*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left ({\left (b^{3} c^{2} - 16 \, a b c^{3}\right )} A + 3 \,{\left (a b^{2} c^{2} + 4 \, a^{2} c^{3}\right )} B\right )} x^{\frac{9}{2}} +{\left ({\left (2 \, b^{4} c - 31 \, a b^{2} c^{2} + 20 \, a^{2} c^{3}\right )} A + 6 \,{\left (a b^{3} c + 2 \, a^{2} b c^{2}\right )} B\right )} x^{\frac{7}{2}} +{\left ({\left (b^{5} - 12 \, a b^{3} c - 4 \, a^{2} b c^{2}\right )} A +{\left (3 \, a b^{4} - a^{2} b^{2} c + 28 \, a^{3} c^{2}\right )} B\right )} x^{\frac{5}{2}} +{\left (3 \,{\left (a b^{4} - 9 \, a^{2} b^{2} c + 12 \, a^{3} c^{2}\right )} A +{\left (a^{2} b^{3} + 8 \, a^{3} b c\right )} B\right )} x^{\frac{3}{2}}}{4 \,{\left (a^{4} b^{4} - 8 \, a^{5} b^{2} c + 16 \, a^{6} c^{2} +{\left (a^{2} b^{4} c^{2} - 8 \, a^{3} b^{2} c^{3} + 16 \, a^{4} c^{4}\right )} x^{4} + 2 \,{\left (a^{2} b^{5} c - 8 \, a^{3} b^{3} c^{2} + 16 \, a^{4} b c^{3}\right )} x^{3} +{\left (a^{2} b^{6} - 6 \, a^{3} b^{4} c + 32 \, a^{5} c^{3}\right )} x^{2} + 2 \,{\left (a^{3} b^{5} - 8 \, a^{4} b^{3} c + 16 \, a^{5} b c^{2}\right )} x\right )}} + \int -\frac{{\left ({\left (b^{3} c - 16 \, a b c^{2}\right )} A + 3 \,{\left (a b^{2} c + 4 \, a^{2} c^{2}\right )} B\right )} x^{\frac{3}{2}} +{\left ({\left (b^{4} - 17 \, a b^{2} c - 20 \, a^{2} c^{2}\right )} A + 3 \,{\left (a b^{3} + 8 \, a^{2} b c\right )} B\right )} \sqrt{x}}{8 \,{\left (a^{3} b^{4} - 8 \, a^{4} b^{2} c + 16 \, a^{5} c^{2} +{\left (a^{2} b^{4} c - 8 \, a^{3} b^{2} c^{2} + 16 \, a^{4} c^{3}\right )} x^{2} +{\left (a^{2} b^{5} - 8 \, a^{3} b^{3} c + 16 \, a^{4} b c^{2}\right )} x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

1/4*(((b^3*c^2 - 16*a*b*c^3)*A + 3*(a*b^2*c^2 + 4*a^2*c^3)*B)*x^(9/2) + ((2*b^4*c - 31*a*b^2*c^2 + 20*a^2*c^3)
*A + 6*(a*b^3*c + 2*a^2*b*c^2)*B)*x^(7/2) + ((b^5 - 12*a*b^3*c - 4*a^2*b*c^2)*A + (3*a*b^4 - a^2*b^2*c + 28*a^
3*c^2)*B)*x^(5/2) + (3*(a*b^4 - 9*a^2*b^2*c + 12*a^3*c^2)*A + (a^2*b^3 + 8*a^3*b*c)*B)*x^(3/2))/(a^4*b^4 - 8*a
^5*b^2*c + 16*a^6*c^2 + (a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4*c^4)*x^4 + 2*(a^2*b^5*c - 8*a^3*b^3*c^2 + 16*a^4
*b*c^3)*x^3 + (a^2*b^6 - 6*a^3*b^4*c + 32*a^5*c^3)*x^2 + 2*(a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*x) + integra
te(-1/8*(((b^3*c - 16*a*b*c^2)*A + 3*(a*b^2*c + 4*a^2*c^2)*B)*x^(3/2) + ((b^4 - 17*a*b^2*c - 20*a^2*c^2)*A + 3
*(a*b^3 + 8*a^2*b*c)*B)*sqrt(x))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + (a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3
)*x^2 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*x), x)

________________________________________________________________________________________

Fricas [B]  time = 38.1781, size = 15802, normalized size = 37.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

1/8*(sqrt(1/2)*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + (a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*x^4 + 2*(a*b^5*c
 - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*x^2 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*
a^4*b*c^2)*x)*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18*B^2*a^
4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c + (a^3*b^10 -
20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 + 108*A*B
^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b
 + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*
c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5))*log(1/
2*sqrt(1/2)*(27*B^3*a^3*b^8 + 27*A*B^2*a^2*b^9 + 9*A^2*B*a*b^10 + A^3*b^11 + 6400*(3*A^2*B*a^6 - 4*A^3*a^5*b)*
c^5 - 64*(108*B^3*a^7 - 72*A*B^2*a^6*b + 66*A^2*B*a^5*b^2 - 341*A^3*a^4*b^3)*c^4 + 16*(216*B^3*a^6*b^2 - 324*A
*B^2*a^5*b^3 - 288*A^2*B*a^4*b^4 - 427*A^3*a^3*b^5)*c^3 + 20*(108*A*B^2*a^4*b^5 + 102*A^2*B*a^3*b^6 + 47*A^3*a
^2*b^7)*c^2 - (216*B^3*a^4*b^6 + 396*A*B^2*a^3*b^7 + 267*A^2*B*a^2*b^8 + 53*A^3*a*b^9)*c - (3*B*a^4*b^13 + A*a
^3*b^14 + 40960*A*a^10*c^7 - 4096*(9*B*a^10*b + 8*A*a^9*b^2)*c^6 + 1536*(28*B*a^9*b^3 + A*a^8*b^4)*c^5 - 6400*
(3*B*a^8*b^5 - A*a^7*b^6)*c^4 + 160*(24*B*a^7*b^7 - 17*A*a^6*b^8)*c^3 - 240*(B*a^6*b^9 - 2*A*a^5*b^10)*c^2 - 2
*(12*B*a^5*b^11 + 19*A*a^4*b^12)*c)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 +
 A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*
a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6 + A^2*
b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72*B^2*a
^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280
*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^
4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6
*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640
*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)) + (10000*A^4*a^3*c^5 - 15000*(2*A^3*B*a^3*b - A^4*a^2*b^2)*c^
4 - 3*(432*B^4*a^5 - 3024*A*B^3*a^4*b - 3312*A^2*B^2*a^3*b^2 + 3864*A^3*B*a^2*b^3 + 497*A^4*a*b^4)*c^3 - 5*(64
8*B^4*a^4*b^2 - 216*A*B^3*a^3*b^3 - 648*A^2*B^2*a^2*b^4 - 189*A^3*B*a*b^5 - 7*A^4*b^6)*c^2 - 15*(27*B^4*a^3*b^
4 + 27*A*B^3*a^2*b^5 + 9*A^2*B^2*a*b^6 + A^3*B*b^7)*c)*sqrt(x)) - sqrt(1/2)*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^
2 + (a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*x^4 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^3 + (a*b^6 - 6
*a^2*b^4*c + 32*a^4*c^3)*x^2 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*x)*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6
+ A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72
*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3
+ 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 +
A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a
^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2
 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5))*log(-1/2*sqrt(1/2)*(27*B^3*a^3*b^8 + 27*A*B^2*a^2*b^9 +
 9*A^2*B*a*b^10 + A^3*b^11 + 6400*(3*A^2*B*a^6 - 4*A^3*a^5*b)*c^5 - 64*(108*B^3*a^7 - 72*A*B^2*a^6*b + 66*A^2*
B*a^5*b^2 - 341*A^3*a^4*b^3)*c^4 + 16*(216*B^3*a^6*b^2 - 324*A*B^2*a^5*b^3 - 288*A^2*B*a^4*b^4 - 427*A^3*a^3*b
^5)*c^3 + 20*(108*A*B^2*a^4*b^5 + 102*A^2*B*a^3*b^6 + 47*A^3*a^2*b^7)*c^2 - (216*B^3*a^4*b^6 + 396*A*B^2*a^3*b
^7 + 267*A^2*B*a^2*b^8 + 53*A^3*a*b^9)*c - (3*B*a^4*b^13 + A*a^3*b^14 + 40960*A*a^10*c^7 - 4096*(9*B*a^10*b +
8*A*a^9*b^2)*c^6 + 1536*(28*B*a^9*b^3 + A*a^8*b^4)*c^5 - 6400*(3*B*a^8*b^5 - A*a^7*b^6)*c^4 + 160*(24*B*a^7*b^
7 - 17*A*a^6*b^8)*c^3 - 240*(B*a^6*b^9 - 2*A*a^5*b^10)*c^2 - 2*(12*B*a^5*b^11 + 19*A*a^4*b^12)*c)*sqrt((81*B^4
*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 +
 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^
4 - 1024*a^11*c^5)))*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18
*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c + (a^3*
b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 +
108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*
B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 102
4*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5))
 + (10000*A^4*a^3*c^5 - 15000*(2*A^3*B*a^3*b - A^4*a^2*b^2)*c^4 - 3*(432*B^4*a^5 - 3024*A*B^3*a^4*b - 3312*A^2
*B^2*a^3*b^2 + 3864*A^3*B*a^2*b^3 + 497*A^4*a*b^4)*c^3 - 5*(648*B^4*a^4*b^2 - 216*A*B^3*a^3*b^3 - 648*A^2*B^2*
a^2*b^4 - 189*A^3*B*a*b^5 - 7*A^4*b^6)*c^2 - 15*(27*B^4*a^3*b^4 + 27*A*B^3*a^2*b^5 + 9*A^2*B^2*a*b^6 + A^3*B*b
^7)*c)*sqrt(x)) + sqrt(1/2)*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + (a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*x^4
 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*x^2 + 2*(a^2*b^5 - 8*a^
3*b^3*c + 16*a^4*b*c^2)*x)*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 +
40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c -
 (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*
a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 +
6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4
 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8
*c^5))*log(1/2*sqrt(1/2)*(27*B^3*a^3*b^8 + 27*A*B^2*a^2*b^9 + 9*A^2*B*a*b^10 + A^3*b^11 + 6400*(3*A^2*B*a^6 -
4*A^3*a^5*b)*c^5 - 64*(108*B^3*a^7 - 72*A*B^2*a^6*b + 66*A^2*B*a^5*b^2 - 341*A^3*a^4*b^3)*c^4 + 16*(216*B^3*a^
6*b^2 - 324*A*B^2*a^5*b^3 - 288*A^2*B*a^4*b^4 - 427*A^3*a^3*b^5)*c^3 + 20*(108*A*B^2*a^4*b^5 + 102*A^2*B*a^3*b
^6 + 47*A^3*a^2*b^7)*c^2 - (216*B^3*a^4*b^6 + 396*A*B^2*a^3*b^7 + 267*A^2*B*a^2*b^8 + 53*A^3*a*b^9)*c + (3*B*a
^4*b^13 + A*a^3*b^14 + 40960*A*a^10*c^7 - 4096*(9*B*a^10*b + 8*A*a^9*b^2)*c^6 + 1536*(28*B*a^9*b^3 + A*a^8*b^4
)*c^5 - 6400*(3*B*a^8*b^5 - A*a^7*b^6)*c^4 + 160*(24*B*a^7*b^7 - 17*A*a^6*b^8)*c^3 - 240*(B*a^6*b^9 - 2*A*a^5*
b^10)*c^2 - 2*(12*B*a^5*b^11 + 19*A*a^4*b^12)*c)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*
A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7
*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))*sqrt(-(9*B^2*a^2*b^5 + 6*A*B
*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2
+ 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b
^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a
*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c
+ 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*
b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)) + (10000*A^4*a^3*c^5 - 15000*(2*A^3*B*a^3*b - A^
4*a^2*b^2)*c^4 - 3*(432*B^4*a^5 - 3024*A*B^3*a^4*b - 3312*A^2*B^2*a^3*b^2 + 3864*A^3*B*a^2*b^3 + 497*A^4*a*b^4
)*c^3 - 5*(648*B^4*a^4*b^2 - 216*A*B^3*a^3*b^3 - 648*A^2*B^2*a^2*b^4 - 189*A^3*B*a*b^5 - 7*A^4*b^6)*c^2 - 15*(
27*B^4*a^3*b^4 + 27*A*B^3*a^2*b^5 + 9*A^2*B^2*a*b^6 + A^3*B*b^7)*c)*sqrt(x)) - sqrt(1/2)*(a^3*b^4 - 8*a^4*b^2*
c + 16*a^5*c^2 + (a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*x^4 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^3
 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*x^2 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*x)*sqrt(-(9*B^2*a^2*b^5 +
 6*A*B*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)*c^3 + 40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3
)*c^2 + 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b^5)*c - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640
*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A
^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*
b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 16
0*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5))*log(-1/2*sqrt(1/2)*(27*B^3*a^3*b^8 + 27*A*
B^2*a^2*b^9 + 9*A^2*B*a*b^10 + A^3*b^11 + 6400*(3*A^2*B*a^6 - 4*A^3*a^5*b)*c^5 - 64*(108*B^3*a^7 - 72*A*B^2*a^
6*b + 66*A^2*B*a^5*b^2 - 341*A^3*a^4*b^3)*c^4 + 16*(216*B^3*a^6*b^2 - 324*A*B^2*a^5*b^3 - 288*A^2*B*a^4*b^4 -
427*A^3*a^3*b^5)*c^3 + 20*(108*A*B^2*a^4*b^5 + 102*A^2*B*a^3*b^6 + 47*A^3*a^2*b^7)*c^2 - (216*B^3*a^4*b^6 + 39
6*A*B^2*a^3*b^7 + 267*A^2*B*a^2*b^8 + 53*A^3*a*b^9)*c + (3*B*a^4*b^13 + A*a^3*b^14 + 40960*A*a^10*c^7 - 4096*(
9*B*a^10*b + 8*A*a^9*b^2)*c^6 + 1536*(28*B*a^9*b^3 + A*a^8*b^4)*c^5 - 6400*(3*B*a^8*b^5 - A*a^7*b^6)*c^4 + 160
*(24*B*a^7*b^7 - 17*A*a^6*b^8)*c^3 - 240*(B*a^6*b^9 - 2*A*a^5*b^10)*c^2 - 2*(12*B*a^5*b^11 + 19*A*a^4*b^12)*c)
*sqrt((81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*
A^2*B^2*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 128
0*a^10*b^2*c^4 - 1024*a^11*c^5)))*sqrt(-(9*B^2*a^2*b^5 + 6*A*B*a*b^6 + A^2*b^7 - 240*(4*A*B*a^4 - 7*A^2*a^3*b)
*c^3 + 40*(18*B^2*a^4*b - 48*A*B*a^3*b^2 + 7*A^2*a^2*b^3)*c^2 + 5*(72*B^2*a^3*b^3 - 12*A*B*a^2*b^4 - 7*A^2*a*b
^5)*c - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt((
81*B^4*a^4 + 108*A*B^3*a^3*b + 54*A^2*B^2*a^2*b^2 + 12*A^3*B*a*b^3 + A^4*b^4 + 625*A^4*a^2*c^2 - 50*(9*A^2*B^2
*a^3 + 6*A^3*B*a^2*b + A^4*a*b^2)*c)/(a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*
b^2*c^4 - 1024*a^11*c^5)))/(a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1
024*a^8*c^5)) + (10000*A^4*a^3*c^5 - 15000*(2*A^3*B*a^3*b - A^4*a^2*b^2)*c^4 - 3*(432*B^4*a^5 - 3024*A*B^3*a^4
*b - 3312*A^2*B^2*a^3*b^2 + 3864*A^3*B*a^2*b^3 + 497*A^4*a*b^4)*c^3 - 5*(648*B^4*a^4*b^2 - 216*A*B^3*a^3*b^3 -
 648*A^2*B^2*a^2*b^4 - 189*A^3*B*a*b^5 - 7*A^4*b^6)*c^2 - 15*(27*B^4*a^3*b^4 + 27*A*B^3*a^2*b^5 + 9*A^2*B^2*a*
b^6 + A^3*B*b^7)*c)*sqrt(x)) - 2*(3*B*a^2*b^2 + A*a*b^3 - (20*A*a*c^3 - (12*B*a*b - A*b^2)*c^2)*x^3 - (4*(B*a^
2 + 7*A*a*b)*c^2 - (19*B*a*b^2 - 2*A*b^3)*c)*x^2 + 4*(3*B*a^3 - 4*A*a^2*b)*c + (5*B*a*b^3 - A*b^4 - 36*A*a^2*c
^2 + (16*B*a^2*b - 5*A*a*b^2)*c)*x)*sqrt(x))/(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + (a*b^4*c^2 - 8*a^2*b^2*c^3
+ 16*a^3*c^4)*x^4 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*x^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*x^2 +
2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*x**(1/2)/(c*x**2+b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*x^(1/2)/(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

Timed out